
26 CROSSTALK The Journal of Defense Software Engineering November 2002

The phrase defense software refers to soft-
ware produced for a uniformed mili-

tary service such as the Air Force, Army,
Navy, Marines, or Coast Guard. The term
can also include software produced for the
Department of Defense (DoD), or the
equivalent in other countries, by civilian
companies such as Boeing, Lockheed
Martin, Raytheon, and a host of others.

Uniformed military personnel produce
some defense software. In the United
States, however, civilian contractors devel-
op the bulk of defense software.
Oversight and project management roles
are normally the responsibility of military
program management officers.

The broad definition of defense soft-
ware includes a number of subclasses
such as software associated with weapons
systems; with command, control, and
communication systems (usually short-
ened to C3 or C cubed); with logistical
applications; and also with software virtu-
ally identical to civilian counterparts such
as payroll applications, benefits tracking
applications, and the like. The main attri-
bute that distinguishes defense software
from other types of software is adherence
to military or DoD standards.

DoD Software Industry
Overview
Since about 1990, the U.S. defense con-
tracting community has been undergoing
some significant changes. Waves of merg-
ers and acquisitions have led to a reduc-
tion in overall numbers of defense con-
tractors. While the remaining contractors
are growing in size, “downsizing” or elim-
ination of redundant personnel also
accompanied the mergers so the overall
defense sector has not grown in terms of
demographics for several years. However,
in the aftermath of the Sept. 11 tragedy,

new importance has been placed on the
defense community so demographics may
climb again in the future.

The United States is far and away the
major producer and consumer of military
and defense software in the world. The
volume and sophistication of U.S. military
software is actually a major factor of U.S.
military capabilities. All those pictures of
cruise missiles and smart bombs that filled
television news during the Gulf War and
the Afghanistan action have an invisible
background: It is the software and com-
puters onboard that make such weapons
possible.

In addition, the NATO countries tend
to use many weapons systems, communi-
cation systems, logistics systems, and
other software systems produced in the
United States. This means that the volume
of U.S. defense and military software
appears to be larger than the next five
countries put together (Russia, China,
Germany, United Kingdom, and France).
Many other countries produce military
and defense software for weapons and
communications systems that they use or
market, including Israel, Brazil, South and
North Korea, India, Pakistan, Sweden,
and Japan.

Differences Between Civilian
and Defense Software
Practices
To an outside observer, military software
and hardware projects are noticeably dif-
ferent from civilian norms. The first
noticeable difference is the procurement
process itself. The bulk of military proj-
ects are acquired by means of competitive
bids, with lowest cost as a primary consid-
eration. The bidding process is quite for-
mal and includes rather massive sets of
deliverable items from the prospective
contractors. Thus, responding to a military

request for proposal can be an expensive
proposition in its own right.

This form of acquisition by competi-
tive bids also leads to another difference
between civilian and military norms.
Military procurement is often accompa-
nied by litigation that challenges the suc-
cessful bidder. Based on discussions with
DoD officials, almost half of the initial
contract awards are challenged by losing
vendors. An entire body of military con-
tract law, special courts, and arbitrators
deal with these challenges. In contrast, less
than 10 percent of civilian contracts go to
litigation to challenge the winning bid.

As a result of frequent litigation chal-
lenging the initial contract awards, there is
often a six- to 18-month delay in reaching
a final decision on military software con-
tracts and starting the work. This means
that many large military software and
hardware projects are under immediate
schedule pressure. Since schedule pressure
is one of the major root causes of soft-
ware failures, some projects that are
rushed tend to run late, have poor quality,
or end up being canceled since they can-
not meet operational requirements.

Another difference between military
and civilian practice is readily apparent
once the contract work begins. The rela-
tionship between the DoD and its con-
tractors had tended to be somewhat
adversarial. As a result, the oversight and
control requirements of military projects
have been more extensive and burden-
some than civilian norms. This has had a
direct and tangible impact on defense
software productivity. On the other hand,
the number of very large software proj-
ects successfully concluded in the defense
domain appears to be better than civilian
norms for the same sized applications. In
other words, defense software may have
more front-end litigation than civilian
software, but fewer instances of litigation

Defense Software Development in Evolution©

Capers Jones
Software Productivity Research, Inc.

The author and his colleagues have been measuring software quality and productivity rates since 1985. They classify the proj-
ects that they examine into six major groupings: information technology software, outsource software, commercial software, sys-
tems software, defense software, and end-user development software. Applications are placed in the defense software group if
they followed U.S. military or Department of Defense (DoD) standards. Overall, defense software projects have ranked near
the top in software quality. However, defense software projects have ranked last in terms of software productivity, mainly
because DoD standards created a number of extra tasks for defense software that do not occur in the civilian sector. In addi-
tion, the volume of defense software specifications and other paper documents has been about three times larger than civilian
norms. As the DoD moves toward adopting the best civilian practices and standards for software, it is possible to see some
improvement in productivity while keeping software quality levels high.

© Copyright 2002 by Capers Jones. All Rights Reserved.



Defense Software Development in Evolution

November 2002 www.stsc.hill.af.mil 27

for non-performance at the end.
Due to elaborate oversight require-

ments, the volume of planning and track-
ing paperwork required for a typical mili-
tary software project has been about three
times larger than for civilian software
projects of the same size, based on our
comparisons. Indeed, software require-
ments, software specifications, and almost
all forms of text-based documents were
several times larger for military projects
than for equivalent civilian projects.

The large volume of paper documents
is one of the main reasons why military
software productivity rates lagged behind
all other domains. About 400 English
words were produced for every source
code statement in the Ada95 program-
ming language on typical military software
projects in the 1980s and early 1990s.
These words cost at least twice as much as
the code itself. It is not unusual for large
defense projects to accumulate roughly 50
percent of total costs in the area of pro-
ducing and reviewing paper documents.
This is far more than for any other kind of
software.

While every software project needs
requirements, specifications, plans, and
deficiency reports, about half of the
words created for military software proj-
ects seemed to be due to the very elabo-
rate oversight and status reporting criteria
associated with military contract work.
Basically, some of the documents are pro-
duced to demonstrate contract compli-
ance rather than to add technical content
to the project itself.

Dealing with the DoD and the military
services for business and contract purpos-
es is so complex and specialized that com-
panies actually doing significant amounts
of military business usually have specialist
military proposal and contract personnel
who often are retired military officers. It is
very difficult for amateurs to bid success-
fully on a military contract.

Being the world’s largest producer and
consumer of military software, the United
States’ software production methods are
of global importance. In the United States
in 1994, the Secretary of Defense William
Perry issued a major policy statement [1]
saying in effect that DoD standards no
longer needed to be utilized. Instead, the
armed services and the DoD were urged
to adopt current civilian best practices.

Immediately, several task forces and
study groups were created to explore lead-
ing civilian software practices. However,
the military community has a conservative
bent. Many military and DoD standards,
such as MIL-STD-2167A or MIL-STD-
498 [2], have continued to be the de facto

standards of the military world, if for no
other reason than because military con-
tractors have used them for so long they
are comfortable with the nomenclature
and requirements.

Since civilian software fails, too, (wit-
ness the protracted delays associated with
the luggage handling system of the
Denver Airport [3]) another challenge for
the defense community is to select prac-
tices from the civilian sector that truly do
work, as opposed to practices that are
merely fads. James Johnson and his col-
leagues at the Standish Group publish an
annual report on software failures [4].

Further, some of the civilian stan-
dards, such as the ISO 9001-9004 quality
standards, create document volumes that
are just as large, or larger, than military
standards such as MIL-STD-2167.
Overall, selecting the best standards in
either civilian or defense sectors is not
necessarily an easy task.

The World Wide Web has many inter-
esting sites dealing with the evolution of
military standards toward civilian equiva-
lents such as those published by well-
known standards organizations, including
the Institute of Electrical and Electronic
Engineers (IEEE). Using a search engine
with the key words “military standards”
will bring up more than 20 relevant sites.
One of the relevant documents is an
interesting report on “Systems Engineer-
ing Standards and Models Compared” by
Sarah Sheard and Dr. Jerome Lake. This
document is available via the Software
Productivity Consortium at <www.soft
ware.org/pub/externalpapers/98042.
html>. On the whole, the best models for
the military domain would be the large
civilian systems software producers such
as AT&T, IBM, etc.

The phrase systems software refers to
software applications that control com-

plex physical devices. Examples include
digital computers, modern telephone
switching systems, aircraft flight controls,
and robotic manufacturing tools. The larg-
er systems software applications, such as
IBM’s multiple virtual storage (MVS)
operating system, are about 100,000 func-
tion points in size, which is equivalent to
roughly 10,000,000 source code state-
ments in common procedural languages
such as Fortran, PL/I, or Ada.

Systems software is of similar size and
complexity levels to many large-scale mili-
tary applications. However the civilian sys-
tems software domain manages to build
large applications with smaller specifica-
tions, shorter schedules, lower costs, and
equal or higher quality than normally
found on defense projects. The compa-
nies that build systems software tend to
utilize sophisticated internal standards
augmented by major international stan-
dards, such as those published by the
IEEE and ISO.

Both the civilian systems software
domain and the defense software domain
excel in software quality control. Since
both domains are concerned with com-
plex hardware platforms that are con-
trolled by software, it is imperative to have
state-of-the-art quality control or the
hardware devices may fail or perform in
hazardous ways.

In contrast, the companies that pro-
duce information systems, commercial
software packages, and software not con-
trolling physical devices often lag in soft-
ware quality control. There are both social
and technical reasons for this. For exam-
ple the systems and defense software
domains almost always have formal quali-
ty assurance departments, while the infor-
mation systems and commercial vendors
are not as likely to have quality assurance
groups.

Historically, the systems software and
defense domains evolved from older engi-
neering groups that had quality assurance
support even before computers were uti-
lized. The information systems domains
evolved from accounting, finance, and
business operations that seldom utilized
quality assurance before computers were
common.

Another aspect of the DoD attempt
to move in a civilian direction is increased
usage of commercial off-the-shelf soft-
ware (COTS). Obviously the use of
COTS packages refers to ordinary busi-
ness and personal software packages such
as databases, payroll programs, spread-
sheets, and the like. The COTS concept is
clearly not aimed at sophisticated weapons
systems where no civilian packages exist.

“Organizations at or
above CMM Level 3 are

more likely to be
successful on large

systems [larger than
10,000 function points
or 1,000,000 source

code statements] than
those at Levels 1 or 2.”



Open Forum

28 CROSSTALK The Journal of Defense Software Engineering November 2002

Unfortunately, the military and
defense domain have no strong incentive
for adopting civilian best practices other
than innate professionalism. The DoD
itself and the military services are not
profit-making organizations. If they tend
to overspend or develop software in a way
that is more costly than the civilian sector,
so long as the fundamental mission
requirements are not compromised, there
is no overwhelming reason to improve.

For contractors, there are actually
business reasons for staying somewhat
inefficient compared to civilian norms.
For time and materials contracts, there
would be a negative incentive for adopting
civilian best practices since increased pro-
ductivity and shorter schedules would
reduce the revenues and the profits from
major contracts.

For fixed-price contracts, a case might
be made that adopting civilian best prac-
tices would lower costs and raise the prob-
ability of gaining the contract. However,
artificially low bids are common enough
that this strategy might not be effective.
The whole process of military procure-
ment and contracting is in need of very
careful analysis and possible re-work.

Defense Software
Technologies
The military services and the DoD have
been quite active in software technology
research. Many initiatives have been fund-
ed and several prominent organizations,
such as the Software Engineering Institute
(SEI) and the Software Productivity
Consortium (SPC), have focused much of
their research on defense and military
software.

Historically, the major programming
languages used for military software
included assembly language, Fortran, and
some specialized languages that were sel-
dom used outside of the military domain:
Jovial and CMS2. The Ada83 program-
ming language and the newer Ada95 pro-
gramming language continue the tradition
of developing specialized languages for
defense software. However, the Ada lan-
guages have also attracted some civilian
users, especially so in Europe.

Because of the diversity of software
applications under the overall military
umbrella, almost all programming lan-
guages are used. For example COBOL is
used for more business-oriented military
software such as payroll applications. The
C and C++ programming languages are
also used. Of the total of about 600 pro-
gramming languages in current use, we
have noted at least 75 languages on vari-

ous military applications including JAVA,
which is expanding in use among all soft-
ware classes.

It is interesting that when productivity
comparisons are restricted to coding, and
exclude production of paper documents,
the defense community and the civilian
systems software community are roughly
equal in terms of productivity. In other
words, the defense programming commu-
nity is as good as other software domains
in coding.

Military projects often share common
features with civilian systems software
projects. One of these features is a need
for high quality and reliability coupled
with rather sophisticated software quality
assurance groups. The military software
domain has the second highest levels of
defect removal of any type of software
that Software Productivity Research has
studied. Many military software projects
top 95 percent in defect removal efficien-
cy, and some have approached 99 percent.
Since the U.S. national average is only
about 85 percent in terms of pre-deploy-
ment defects removed, the defense com-
munity has had better than average quality
control.

This is true for weapons systems and
communications systems, but not neces-
sarily true for ordinary defense applica-
tions such as payrolls and accounting that
do not follow military standards. The
domains that lag in software quality con-
trol include information systems, com-
mercial software vendors, and some but
not all outsource vendors. Of course in
every domain there are broad ranges of
performance, just as there are broad
ranges in every human activity.

The military domain also ranks as
number two in the use of software quality
assurance departments. On many defense
projects, more than 30 percent of the total
work force is involved with testing and
quality assurance tasks. Quality control in
the military domain for weapons systems
is quite sophisticated for obvious reasons.
The main reason is because military soft-
ware controls complicate physical devices
such as radar sets and aircraft flight con-
trols. If these do not work as intended,
lives and battles could be lost.

The importance of quality control and
formal processes within the military soft-
ware domain explains why more defense
software producers can be found at or
higher than Level 3 on the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®) than other
domains. Since many companies that are
SEI CMM Level 3 produce both military
and civilian software, there is some over-

lap between the systems and military soft-
ware companies.

The defense software community
deserves credit for pioneering software
process assessments and process improve-
ment technologies. The impact of the
SEI’s CMM has benefited many major
defense applications and is spreading rap-
idly among civilian software producers as
well.

In our studies since 1994, large appli-
cations of the same nominal size, such as
10,000 function points, appear to have
better productivity and quality levels when
produced by organizations at or above
CMM Level 3. For smaller applications of
around 1,000 function points in size, the
data is less definitive but still favors the
higher CMM levels.

A number of fairly sophisticated soft-
ware quality approaches are quite com-
mon in both the military and systems soft-
ware domains. The quality assurance and
control methods used by both systems
and military software include the follow-
ing:
• Formal design and code inspections.
• Quality estimation tools.
• Quality and defect removal targets for

key projects.
• Quality Function Deployment.
• Six sigma quality targets.
• Complexity analysis tools.
• Automated defect tracking systems.
• Test library automation support.
• Automated change control tools.
• Trained testing specialists.
• Formal regression test suites.
• Full life-cycle quality measurements.
• The SEI’s CMM.

Both the systems and the defense soft-
ware domains also strive for excellence in
project management disciplines. Software
cost estimation and software milestone
tracking are very detailed activities in the
defense domain. Software project man-
agement is an area where the defense
community may be superior to most civil-
ian sectors.

The military software domain utilizes
the following two techniques that are sel-
dom encountered on civilian software
projects:
• Independent verification and valida-

tion (IV&V).
• Independent testing by a third party.

The phrase IV&V implies using a
third party or an external company to
investigate whether all requirements have
been met and whether the design and
other documents meet all relevant military
standards. The phrase independent testing
refers to hiring a company other than the
prime contractor on a military software



project to conduct late stage testing after
internal testing.

Both IV&V and independent testing
add costs to military software projects
that are not encountered on normal civil-
ian projects. Whether or not these stages
actually improved quality is ambiguous. It
is true that military software defect
removal is among the best of any kind of
software project. However, it is no better
than the defect removal found on civilian
systems’ software projects where IV&V
and independent testing are not per-
formed. Yet the military results are still
better than those usually noted on infor-
mation systems and commercial software
applications, and on some outsource proj-
ects.

The overall results of the military
software quality approaches have been
generally successful. Indeed, only systems
software and military software have
approached or exceeded 99 percent in
cumulative defect removal efficiency lev-
els.

Large system development is inher-
ently difficult and complicated. The
defense software community often has a
need for very large software systems that
can approach or exceed 100,000 function
points or 10,000,000 source code state-
ments. At this large end of the spectrum,
the defense community achieves better
quality levels and more successful out-
comes than any other domain except the
best of the systems software producers.
Productivity rates are fairly low, but fail-
ures and cancelled projects are low, too.
Thus, the overall economic picture for
building very large applications is not too
bad in the defense sector. Indeed, for the
largest applications beyond 100,000 func-
tion points, military software is an overall
leader in terms of success and failure
ratios.

It can be said that the strong emphasis
in the military world on rigorous process-
es, complete specifications, and formal
quality assurance controls produce proj-
ects that are fairly successful above 10,000
function points in size and even above
100,000 function points. These large soft-
ware projects are expensive of course, but
being able to complete such projects and
have them work is a very difficult task.
The success of the military software com-
munity on very large software applica-
tions is commendable.

Conclusions
Overall, the defense move toward civilian
best practices is encouraging. However
because this initiative only started in 1994
and required several years of research, the

results may not be fully visible until some-
time around 2005 or later. The reason for
this is because applications in the 10,000
to 100,000 function point size ranges nor-
mally have development cycles approach-
ing five calendar years. Thus, major
defense applications using civilian best
practices and standards are still under
development and hence not yet studied
and measured in terms of overall produc-
tivity and quality.

The following are some of the con-
clusions that we have reached from study-
ing both civilian and defense software
projects:
• Large applications above 10,000 func-

tion points or 1,000,000 source code
statements require rigorous quality
control and capable project manage-
ment to be successful. Large applica-
tions that skimp on quality control
and are careless with plans and esti-
mates usually fail. If they do not fail,
they will run late and exceed their
budgets by notable amounts.

• The strong emphasis on quality con-
trol and project management disci-
plines associated with the SEI’s CMM
leads to a greater probability of suc-
cessful completion than less formal
processes for applications larger than
10,000 function points or 1,000,000
source code statements. Organizations
at or above CMM Level 3 are more
likely to be successful on large systems
than those at Levels 1 or 2.

• For small applications below 1,000
function points or 100,000 source
code statements, formal processes are
not as significant as the experience of
the development team. This is because
teams are small so competence – or
incompetence – of even one person
tends to be visible and significant.

• For small applications below 1,000
function points or 100,000 source
code statements, the level achieved on
the CMM by the development team
does not lead to major differences in
successes or failure rates.
Overall, there are hundreds of ways to

cause software projects to fail, and only a
few ways to make them succeed. The
highest odds of success will be found
where capable teams use formal quality
control and formal project management
methods.

The military and defense community
has been a pioneer in both quality control
and project management methods. This
appears to have paid off when building
large software packages. Capable software
personnel are in great demand every-
where so all domains are striving to select

and keep good personnel.
The DoD’s move to civilian best prac-

tices is encouraging and indicates a desire
to improve software performance. Of
course, quite a few civilian practices are of
marginal value so one of the problems
facing the defense community is to select
practices that are truly best in terms of
achieving high levels of quality, reliability,
productivity, or other tangible factors.◆

References
1. Perry, William J. “DoD Policy on the

Future of MILSPEC.” CrossTalk
Sept. 1994.

2. Sorensen, Reed. “Software Standards:
Their Evolution and Current State.”
CrossTalk Dec. 1999.

3. Dempsey, Paul Stephen, et. al. Denver
International Airport: Lessons
Learned. McGraw-Hill. Mar. 1997.

4. Johnson, James, et. al. The Chaos
Report. West Yarmouth, Mass.: The
Standish Group, 2001.

Defense Software Development in Evolution

November 2002 www.stsc.hill.af.mil 29

About the Author
Capers Jones is chief
scientist emeritus of
Artemis Management
Systems and Software
Productivity Research
Inc., Burlington, Mass.

Jones is an international consultant on
software management topics, a speak-
er, a seminar leader, and an author. He
is also well known for his company’s
research programs into the following
critical software issues: Software
Quality: Survey of the State of the
Art; Software Process Improvement:
Survey of the State of the Art;
Software Project Management: Survey
of the State of the Art. Formerly,
Jones was assistant director of pro-
gramming technology at the ITT
Programming Technology Center in
Stratford, Conn. Before that he was at
IBM for 12 years. He received the
IBM General Product Division’s out-
standing contribution award for his
work in software quality and produc-
tivity improvement methods.

Software Productivity 
Research Inc.
6 Lincoln Knoll Drive 
Burlington, MA 01803 
Phone: (781) 273-0140 
Fax: (781) 273-5176 
E-mail: cjones@spr.com


